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For the approximation of functions and data, it is often appropriate to min-
imize a norm. Many norms have been considered, and a review is presented
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1. Introduction

Two central problems in approximation theory are the approximation of
data and the approximation of functions. Given a set of data or a function
for which an approximation is required, two fundamental issues are the kind
of approximation which should be chosen, and the measure of goodness of
fit which should be used. These will of course depend very much on the
precise nature of the underlying problem, and our main interest here is a
consideration of methods for obtaining solutions to a wide range of such
problems which are of practical importance.

As far as the approximation of functions is concerned, the goal is to re-
place the original function by one that is simpler or more manageable. The
most useful measure is the Chebyshev norm: as Meinardus says in the pre-
face to his book (Meinardus 1967), '.. .it has by far the greatest practical
importance'. There has of course been much interest in the use of the L2
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norm, and one reason for this is that the analysis is relatively straightfor-
ward, with linear approximation leading directly to the solution of a linear
system of equations. There are obvious advantages if the basis functions
are orthogonal or orthonormal, so that this is in some ways a natural meas-
ure to use when approximating by orthogonal polynomials, Fourier series or
orthogonal wavelets. The emphasis here is on methods for computing ap-
proximations, and so we will not pursue this further, but confine attention
almost entirely to the Chebyshev norm: some relevant material is covered
in Section 5. The L\ norm has also attracted some interest, and we will deal
briefly with it in Section 6.

For the approximation of data the situation is quite different, and there
are many criteria that are of practical value. There are two main features of
data approximation. Firstly, there is a wide range of characteristics which
the data may possess. For example, the data may arise from the sampling
of a known function, or they may be observed or measured data for which
the underlying form is known: a simple example is data, generated exper-
imentally, which might be expected to lie on a straight line. At the other
extreme, the data may be irregularly positioned, with no discernible pattern.
Secondly, observed data generally contain errors, and the nature of these is
an important consideration in deciding a measure for goodness of fit.

The simplest and most direct way of choosing the unknown parameters
in data-fitting problems is by interpolation. This may be appropriate, for
example, if the model is linear, there is a large number of parameters, and
it is known that a nonsingular system will occur. Other more sophisticated
measures may indeed be unsuitable or impracticable because of the sheer
size of the problem. This is the case in the approximation of scattered data
using radial basis functions. Also, if there is significantly different behaviour
of the data in different regions, so that considerable flexibility is required,
then spline functions may be appropriate, and again interpolation may be
the natural thing to use.

This article is, however, not concerned with interpolation, and thus, in the
data-fitting context, it will be assumed that the data can be modelled by a
function containing a number of free parameters, and minimizing a norm is
appropriate. Perhaps the most commonly occurring criterion in such cases
is the least squares norm. Its use has a long and distinguished history, it
is relatively well understood, and there are good algorithms available. Yet
there are often situations where it is not ideal. For example, a statistical
justification for least squares requires certain assumptions about the error
pattern in the data, and if these are not satisfied there may be bias in the
estimate.

Therefore there are many other norms which are of interest in data fitting,
and which have been studied from both a theoretical and a practical point of
view. We will use this statement as an excuse for giving in Section 2 a very
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general theoretical treatment of the conventional linear problem for arbitrary
norms, and we will consider in particular the question of characterization of
solutions of such problems. The analysis is of course contained in a treat-
ment of approximation problems in completely general normed linear spaces,
and this is well known to approximation theorists. However, whereas that
requires some very sophisticated functional analysis, very powerful results
can be obtained for the present problem in a comparatively straightforward
manner, and this should be accessible to the general readership of this book.
The main tool is the subdifferential of the norm, which extends the idea of
the derivative to the non-differentiable case. Therefore we will give some
attention to this, and then go on to use some of the results in special cases.

In Section 3, an important modification of the usual linear problem is
addressed in some (though not complete) generality. In Section 4, nonlinear
problems are briefly considered, again with some emphasis on a general
treatment.

2. Approximation to data by linear models

Suppose that a relationship exists between variables so that one of the vari-
ables can be expressed as a linear combination of n functions of the others.
Then, if a set of values of the variables is generated which is assumed to
satisfy this relationship, the result is a system of linear equations, say

Ax = b, (2.1)

where x 6 R" represents the unknown coefficients, b G Rm is a vector of
values of the dependent variable, and A e ]Rmxn j s formed from the values
of the other variables. If the available data are subject to errors, and m > n,
then (2.1) is an over-determined linear system which normally has no (exact)
solution. If it is assumed that the errors are only present in the data values
forming the vector b, then we can introduce a vector r of perturbations of
b, representing these errors, so that

r = Ax - b, (2.2)

and choose x to make the components of r small in some sense.
The problem of the solution of an overdetermined system of linear equa-

tions in this form has attracted enormous interest. Typically, this is done
by solving the following problem:

find x € R" to minimize ||r||, (2.3)

where || • || is a given norm on 3Rm. A solution always exists, and if the
norm is differentiate, then we can easily characterize a minimum by zero-
derivative conditions. Such conditions are readily extended to the general
case through the use of the subdifferential. We will consider this next.
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2.1. Characterization of solutions

Let || • || be a norm on Rm. Then, for any v G Rm, the dual norm is the
norm on Rm defined by

||v||* = max rTv. (2.4)
||r||<l

The relationship between a norm on Rm and its dual is symmetric, so that,
for any r G Rm,

||r|| = max r r v . (2-5)

Important special cases are the lp norms,

/ m \ VP

llrllp = ( I ^ W ) ' 1<P<°°.

||r||oo = max \n\.
l<i<m

Then the dual norm is the lq norm, where 1/p + 1/q = 1.

Definition 1 The subdifferential, or set of subgradients of ||r||, is given by

<9||r|| = {v G Rm : ||s|| > ||r|| + (s - r)Tv, for all s G Rm}. (2.6)

This set is closed, bounded and convex. It is also easily seen that it is
just the set of vectors v such that equality holds in (2.5): in other words we
have the following very useful result.

Lemma 1 Let r G Rm. Then

0||r|| = {v G Rm : ||r|| = rTv, ||v||* < 1}. (2.7)

Proof. Let v be in the set denned by (2.6). Then, setting s = 0, and s = 2r,
it follows that ||r|| = rTv, and further ||v||* < 1, from the definition. Thus
v lies in the set denned by (2.7). The reverse implication is immediate. •

If ||r|| is differentiable at r, then the subdifferential is a singleton with

This follows from the inequality in (2.6), using convexity. If r = 0, then
obviously

0||r|| = { v £ l m : ||v||* < 1}.

If r 7̂  0, then it is a consequence of (2.5) that ||v||* = 1. For the lp norms,
we have the sets

) , r i ^O; |v»| < 1,^ = 0}, (2.8)

0||r||p = { v € R n : t ; i = sign(ri)|r ir
1| |r| |J-P}, 1< p < oo, (2.9)
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and, denning

J = {i : \n\ = \\r\\oo},

^Hrlloo = < v € M.m : s i g n ( ^ ) = s ign ( r j ) , i e J ; vt = 0, i £ J ;

The concept of the subdifferential enables us to characterize readily the
solutions of linear best approximation problems set in Mm. Two preliminary
lemmas are required. Lemma 2 can in fact be given in a much stronger form,
but this version is sufficient for our purposes; Lemma 3 gives an expression
for the directional derivative of the norm in terms of the subdifferential.
With the assumption that the reader knows that the minimum of a con-
tinuous function over a closed and bounded set is attained, the rest of this
section should be entirely self-contained.

Lemma 2 Let r, s G Rm, let 7 G M, and let v(7) G <9||r + 7s||. Then the
limit points of v(7) as 7 —> 0 lie in <9||r||.

Proof. Clearly {v(7)} has limit points; let one of these be v. Then ||v||* < 1.
Further,

v(7)Tr = v(7)T(r + 7s) —

Letting 7 —• 0, the result follows. •

Lemma 3 Let r, seR™. Then

lim l | r + 7 S | M | r " . (2.11)
7^0+ 7

Proof. For all v G <9||r||, using Definition 1,

||r

Also, for all v(7) G d\\r + 7s||, again using Definition 1,

Combining these inequalities shows that, for all v G <9||r||, v(7) G 9||r
we have for 7 > 0

T ||r + 7s|| ||r|| T

v s < — lL-- < v(7) s.
7

Letting 7 —> 0+ and using Lemma 2, the result follows. •
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These results enable a general, and simple, characterization result to be
established.

Theorem 1 The problem (2.3) is solved by x, with r = Ax — b, if and
only if there exists v € <9||r|| with

ATv = 0. (2.12)

Proof. Let x be a solution but assume that (2.12) is not satisfied. Consider
the problem:

find v e <9||r|| to minimize ||^4Tv||2.

Then a solution exists, at w, say. By convexity, Av + (1 — A)w £ d\\r\\, for
0 < A < 1, where v £ <9||r|| is arbitrary. Thus

0 < \\A

= \2\\AT(v-w)\\2
2 + 2A(v - w)TAATw.

The last term on the right-hand side will actually be negative for small pos-
itive A if the coefficient of A is negative, which would lead to a contradiction,
and so

vTAATw > wTAATw > 0.

Thus, setting s = — AATw in Lemma 3, and using the fact that v is arbit-
rary, contradicts the assumption that x gives a minimum of the norm.

Now let the conditions hold for some x G Rn, with w G <?||r|| satisfying
(2.12). Then, if y G R" is arbitrary,

\\Ay-b\\ > wT(Ay-b)
= wT(Ax - b)

The proof is completed. •

This result, in conjunction with appropriate sets <9||r||, can be used to
obtain specific characterization results.

2.2. l\ approximation

There is particular interest in approximation using the l\ norm because it
has the property of de-emphasizing the effect of wild points or gross errors
in b. We will expand on that after giving a characterization result. For any
x e Rn, let I denote the set of indices where r; = 0, and let Ic denote its
complement. From Theorem 1 and (2.8), we have the following theorem.
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Theorem 2 The vector x is a solution to the l\ problem if and only if
there exists A e Rm with

Aj = sign(r,), i € Ic, and |A;| < 1, iel,

such that

ATX = 0. (2.13)

The l\ problem is said to be primal nondegenerate if, at any point x,
the rows of A corresponding to i G / are linearly independent; it is dual
nondegenerate if, for any A satisfying (2.13), at most m — n components of
A are equal to 1 in modulus.

Suppose that, at a solution, one of the values of bi, i G Ic, is perturbed
in such a way that sign(r,) is unchanged. Then clearly the characterization
conditions are unaffected, so that the solution is unchanged. It is this prop-
erty of robustness, or insensitivity to possibly large errors in the data, that
makes the l\ norm important.

Because ||r||i is a piecewise linear function, the most commonly used al-
gorithms have been based on movement between intersections of points hav-
ing sets of zero components of r. In addition to methods based explicitly
on linear programming (for example, Barrodale and Roberts 1973), variants
based on reduced gradients (Osborne 1987, Shi and Lukas 1996), or pro-
jected gradients (Bartels, Conn and Sinclair 1978) are popular: for some
relationships, see Osborne (1985). These methods are finite and, with effi-
cient implementation, including line searches, have for a long time appeared
to represent the right way to tackle the problem. Recently, however, there
has been interest in iterative methods, which effectively smooth the prob-
lem. Partly, this has been due to the success of interior point methods for
linear programming problems, and attempts have been made to use such
ideas in the li problem. We will examine first a method of this type, based
on the idea of affine scaling.

Let A have rank n and let the QR decomposition of A be given by

A = YR,

where R is n x n upper triangular, and [V : Z] is an m x m orthogonal
matrix. Then (2.13) is equivalent to

A = Zw, (2.14)

where w e M.m~n and (2.2) is equivalent to

ZT(r + h) = 0. (2.15)
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Define Dr to be the diagonal matrix with (i,i) element n, and let g € Rm

be the vector denned by

_ / sign(ri), i € Ic,
9i~{0, i € / .

It follows that x solves the l\ problem if and only if there exists r € Rm, w G
Rm-n, such that

A - ( g - Z w ) = 0 (2.16)

ZT(r + b) = 0, (2.17)

and, in addition,

- 1 < (Zw)i < 1, i = l,...,m. (2.18)

An affine scaling method attempts to solve (2.16), (2.17), (2.18) by an iter-
ative method that computes a direction of progress from the current vector
r by solving the following subproblem:

subject to ZTd = 0,

prMHa^r, (2.19)

where I? is a given positive definite diagonal matrix, and r is a given positive
number that restricts the size of d: (2.19) can be thought of as scaling
the solution. It is a straightforward exercise to show that d* = ad is the
solution, where a is a suitably chosen scalar and d is given by

d = -A(ArD-2Ay1ATg. (2.20)

Assume that, at the current r, (2.17) is satisfied (and so remains satisfied
for subsequent r), and also / = </>. Then g is just the gradient of ||r||i at the
current point, and it follows that the solution d is a descent direction for
the l\ norm (since d = 0 implies that ATg = 0). A line search to minimize
the piecewise linear function ||r + ad|| with respect to a can readily be
incorporated, and, if we stop short of the optimal step length, then we can
start again from a point with I = <f>. Note that no explicit value of r is
actually required.

Now consider the alternative of applying Newton's method to (2.16) and
(2.17). The Newton step in r and w is given by solving the system

D0 -DrZ 1 T 6v 1 _ [ -D r (g - Zw) 1 , ,

ZT o U w h o ' (2-21)
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where Dp = diag{/3j,..., j3m}, with fli = gi — (Zw)j, i = 1 , . . . , m. It follows
from this system that

(5r = -A(jFD-^DpAS ^ T g . (2.22)

Note that (2.20) and (2.22) have the same general form. Let D be chosen
by

and write

6ev = -A(ATW9A)-1ATg, (2.23)

where

We = d i 1

Then the choice 6 — 1 in (2.23) gives (2.20), and the choice 0 = 0 gives
(2.22), provided that D~1D^ is positive definite. That this is true for a
set of points r arbitrarily close to a solution but having no component of r
zero is a key observation in the hybrid method of Coleman and Li (1992a).
By providing a criterion for choosing 9 so that 9 —> 0 as (r, A) tend to
optimal values, and working with (2.23), they develop a method which is
globally convergent to a solution, with a quadratic convergence rate, if the l\
problem is primal and dual nondegenerate. The full Newton step is not taken
asymptotically because of the damping required to maintain differentiability;
however, sufficiently accurate approximations to the full Newton step are
achieved to permit quadratic convergence.

Note that (2.23) may be solved by first calculating the I2 solution of the
system

W]I2A d! = W~1/2
E,

followed by setting

Ser^-Ad^ (2.24)

The new value of r is then obtained by a line search in the direction 6$r. To
obtain a new value of A, it helps to observe that use of the hybrid method
corresponds to solving the system analogous to (2.21), namely

We -Z 1 [ 6ev 1 _ [ - (g - Zw)
ZT 0 tfw ~ 0T n i l * „ , 1 = 1 " n I • (2-25)

It follows from this that the current value of A can be updated to the value

Z(w + 6w) = g + We6er,

with ^ r given by (2.24). Of course, (2.13) remains satisfied. Although Z
appears as an aid to the theoretical development of the method, note that
its actual computation is unnecessary, and we need only work with r and A.
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An initial approximation may be obtained by choosing the r satisfying (2.2)
of minimum I2 norm, and taking A to be a multiple of that r.

It may appear that difficulties are inevitable in practice as components of r
tend to zero. However, Coleman and Li (1992a) show that theoretically this
is not a problem, and neither is it in practice if the method is implemented
carefully. They give numerical results which show improvement over an
earlier attempt to provide a method based on an interior point approach.
Although comparisons with other methods do not seem to be available, the
affine scaling method seems promising for large problems, since it appears
to be insensitive to problem size.

Another method that attempts to smooth the l\ problem has been de-
veloped recently by Madsen and Nielsen (1993). It is based on the use of
the Huber M-estimator, defined by

_ (n), (2.26)

where

r t212 \t\ < v
I 7(1*1 -7/2), 1*1 > 7,

r is given by (2.2) and 7 is a scale factor or tuning constant. The function
(2.26) is convex and once continuously differentiable, but has discontinuous
second derivatives at points where |J-J| = 7. The mathematical structure
of the Huber M-estimator is considered by Clark (1985). Clearly, if 7 is
chosen large enough, then ipy is just the least squares function; in addition,
if 7 tends to zero, then limit points of the set of solutions minimize the l\
norm (see Theorem 3). It is the latter property that concerns us here. It has
been suggested by Madsen and Nielsen (1993) and also Li and Swetits (1998)
that the preferred method for solving the l\ problem is via a sequence of
Huber problems for a sequence of scale values 7 —> 0. This algorithmic
development has led to increased interest in the relationship between the
Huber M-estimator and the l\ problem; see, for example, Madsen, Nielsen
and Pinar (1994), Li and Swetits (1998).

Let a partition be defined by an index set a and its complement uc as
follows:

G = {i : | r . | < 7}, crUac = { l , 2 , . . . , m } . (2.28)

Then the system of equations determined by the necessary conditions for x
to be a solution is

a
Aax = AlK - 7 J2 9i*i, (2-29)



CHOICE OF NORMS 347

where af denotes the zth row of A, gi = sign(rj) as before, Aa is obtained
from A by deleting rows corresponding to indices i G ac, and bCT is defined
similarly.

For given 7, the Huber problem can be solved by Newton's method, or a
variant, using a line search. There are other possibilities, and a comparison
of eight algorithms for this problem (inter alia) is given by Ekblom and
Nielsen (1996). Algorithms based on continuation are also given by Clark
and Osborne (1986), Boncelet and Dickinson (1984). For given x 6 Rn,
define W as a diagonal matrix with elements 1 if |rj| < 7 and 0 otherwise.
Then, assuming that no value of |r,| is equal to 7, and letting s € Mm be
defined by

Si = sign(rj), i G ac

it is easily seen by differentiating the Huber function that ip-y is minimized
if and only if

A [-^r + sj=O. (2.30)

The formal Newton step d for solving this system of equations ignores the
discontinuity in derivative. It satisfies

-ATWAd = -AT \-WT + si , (2.31)
7 LT J

or
ATWAd = -AT(Wr + 7s), (2.32)

If A has full rank n, then the rank of W can always be taken to be at least
n at the solution of the M-estimation problem: Osborne (1985). However,
this does not ensure that W has rank at least n in a step of the Newton
iteration. Problems with singularity of the linear system can be avoided
by inserting additional Is into the diagonal positions of W, or indeed the
unit matrix can be used. The solution to (2.32) is most efficiently obtained
through LU factorization of the matrix on the left-hand side; one step of
iterative refinement is recommended in Madsen and Nielsen (1993). A line
search may be needed to ensure descent.

As the iteration proceeds, the partition a will change, until the partition
valid at the solution is obtained. Then the iteration terminates in one fur-
ther Newton step (because a quadratic is being minimized). Changes in the
partition translate into changes in W (and s), and corresponding changes to
the LU factors of ATWA. It is here that the efficiency of the algorithm is
achieved, because changes of a single index in the partition mean a rank 1
change so that updating of the factors is all that is required, a typical it-
eration costing O(n2) operations. Changes of more than one index need
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refactorization, at a cost of O(n3) operations: however, this is in practice
needed only occasionally (see, for example, Table 2 of Madsen and Nielsen
1993). Once a solution has been obtained for a particular 7, the value of 7 is
reduced and the process repeated, using warm starts. Again, only a rank 1
change to ATWA may be needed.

A key observation here is that it is not necessary to let 7 go to zero, but
the method can be terminated at a nonzero value. The relevant result is as
follows.

Theorem 3 Let x,$ minimize ips, and suppose that s and W remain con-
stant for 0 < 7 < 6. Then x,5 + <5v solves the l\ problem, where

8ATWAv = -ATWr(x:6). (2.33)

Proof. For 0 < 7 < 6, define

x7 = xg + (6 - 7)v.

Then

= ATW (rfa) + (6 -

= ATWr(xs) + (6- -/)ATWAv + ^ATs

= ATWr(x6) - ftp-} ATWr(x6) + fATs using (2.33)

= 0,

using (2.30) and the definition of xg. It follows from (2.30) that x7 minimizes
the Huber function tp^.

Now, for 0 < 7 < 6,

y) + 7A1 s = 0

is equivalent to
• ^\ y 0' ('X. )SL ' — I)

or

i(x7)aj = 0. (2.34)
7

Using (2.28), continuity implies that

= 0, i E a,
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where xo = x<5 + <5v. Thus

a C I = {i: ri(x0) = 0}.

In addition,
5i(x7) = 3i(xo), i G ac.

Now,

< 1, tea.
7

Thus there exist numbers Vi, \vi\ < 1, i € / such that

= 0.
1 6 /

Thus xo solves the l\ problem and the proof is complete. •

Because the algorithm cannot return to the same sign vector, the condition
0 < 7 < 6 will eventually be satisfied. Note that the matrix on the left-
hand side of equation (2.33) is such that no new factorization is needed to
compute v.

Numerical results given by Madsen and Nielsen (1993) show that careful
implementation of the method can make it superior to the algorithm of
Barrodale and Roberts (1973). The larger scale calculations, however, are
carried out only for randomly generated problems with m/n — 2, which
does not seem appropriate for problems of practical interest. More efficient
implementations of simplex-based methods, with careful attention to line
search performance and scaling, are available for solving the l\ problem: see
Bloomfield and Steiger (1983), Osborne and Watson (1996). Thus, although
the Huber-based approach seems to be a promising one, further investigation
would be valuable.

2.3. lp approximation, 1 < p < oo

For given x € Rn, let r = r(x), let Dr be as in the previous section, and let
.D|r| denote the matrix

D|r| =diag { |n | , . . . , | rm |}.

Then, applying Theorem 1, or by direct differentiation, it follows that x
minimizes ||r||p if and only if

= 0, (2.35)

where, as before, gi = sign(r;), i = 1,... ,m. When p = 2, this gives the
usual normal equations; otherwise it is a nonlinear system of equations for
a solution x. If the value p = 2 is not satisfactory because of the error
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pattern, there may be merit in moving p towards 1. The range 1 < p < 2 is
of particular interest computationally because there is reduced smoothness:
problems with p > 2 are twice differentiate, problems with 1 < p < 2 are
once differentiate, and the case p = 1 is non-differentiable.

One way to proceed to find a solution is to recognize that (2.35) can be
written as

= 0, (2.36)

and this can be viewed as a weighted system of normal equations with
weighting matrix W — D?7 . This matrix is of course only defined for
1 < p < 2 if no component of r is zero, and this will be assumed at present.
Fixing this matrix at the current value of x and solving this weighted least
squares problem for the new approximation gives the technique known as
iteratively reweighted least squares (IRLS). This is attractive since least
squares problems are easy to solve. If x is the current approximation, and
x + Ax is the new approximation, we have

ATD?-2A(x + Ax) = ATDp~2h. (2.37)

This simple iteration process will converge if started from close enough to
a solution and also if p is close enough to 2. In fact, a stronger result is
available for the special case when 1 < p < 2. The following lemma, which
is readily proved, is helpful.

L e m m a 4 Let scalars a, b be given with 6 ^ 0 . Then, if 1 < p < 2,

W p - | 6 | p < | | 6 r 2 ( | a | 2 - | 6 | 2 ) , (2.38)

with equality only if \a\ = \b\.

Theorem 4 If 1 < p < 2, the method of IRLS is convergent from any
starting point to a point satisfying (2.36).

Proof. Let r + be the vector r evaluated at x + A x defined by (2.37). Setting
a = rf, b = T{ in (2.38) and summing from i = 1 to m gives

< 0,

using the definition of r + . Thus there is strict reduction unless (2.36) is
satisfied, and the result is proved. •

Unfortunately, the properties of guaranteed convergence provided by this
theorem, coupled with the simplicity of the iteration process, are offset by
the fact that the process is accompanied by a potentially unsatisfactory
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convergence rate: this is linear, with convergence constant \p — 2| (see Os-
borne 1985). Thus, as p approaches 1, for example, convergence can be
intolerably slow.

Consider now the alternative of using Newton's method. Let

f (x) = ATD^2r.

Then it is readily seen that

so the Newton step d satisfies the linear system of equations

(p-l)ATDp~2Ad = -ATDP-2r

or
= ATDp~2h.

Comparing this with (2.37) shows that the IRLS step is just (p — 1) times
the Newton step. It is easily seen that d T f (x) < 0, so that d is a descent
direction for ||r||£, and so it makes sense to incorporate a line search. If this
is done in both methods, then essentially the same method is obtained.

As already indicated, one of the difficulties of the range 1 < p < 2 is
the fact that second derivatives do not always exist if any component of
r becomes zero. Different strategies have been proposed to get round this
difficulty. However, not just zero components but nearly zero components
are potentially troublesome. There is some evidence, however, that these
phenomena are not by themselves a major problem, but only if they are
accompanied by p being close to 1. The main difficulty appears to be due
to the fact that, as p approaches 1, we are coming closer to a discontinuous
problem, effectively to a constrained problem. It seems necessary to recog-
nize this in a satisfactory algorithm, and consider some of the elements of
the /i problem in devising an approach that will deal with small values of
p in a satisfactory way. This is the philosophy in the recent approach of
Li (1993), which we will now describe.

Let Z be the matrix defined previously whose rows form a basis for the
null space of AT, so that

ZTA = 0.

Define

the derivative of ||r||p with respect to r. Then (2.35) is equivalent to

gp - Zw = 0. (2.39)
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Of course, when p = 1, gp is just g. If Dr is nonsingular, then x solves the
lp problem if and only if there exists r G Rm, w e Rm~n such that

Dr(gp-Zw) = 0, (2.40)

ZT(r + h) = 0. (2.41)

If Dr is singular, then an additional requirement is that if r, = 0, then
(Zvf)i = 0. Notice that (2.40) and (2.41) are just the system of equations
(2.16) and (2.17) in the h case, so that (2.40) incorporates the complement-
ary slackness conditions which are an essential part of the l\ characterization.

Applying Newton's method to (2.40) and (2.41) gives, as before, the step
in r as

6r = -

where in this case

Clearly, when p = 1, this is just the matrix Dp denned before. In order to
globalize the method, one can use a technique similar to that used for the
l\ method. In this case a suitable matrix We is given by

We = diag{|rr1(p(gp) i - (1 - 0)(Zw)O|, z = 1 , . . . , m},

and the step in the direction r is then

Clearly $ = 0 gives

We =

and the Newton step. If 9 = 1, then

or 1/p times the IRLS step. It is therefore possible to develop an algorithm
for the lp problem which is essentially equivalent to the method for p = 1
described above. A line search is of course required, and the details are
given by Li (1993). For 1 < p < 2, the method is globally convergent to
r* satisfying (2.35) if the rows of A corresponding to zero components of
r* are linearly independent; the convergence is super linear if r* has no zero
component.

Numerical results given by Li (1993) show that the new method is clearly
superior to IRLS (with the same line search) for values of p close to 1, with
the gap between the two methods widening as p approaches 1. There is little
difference for values of p > 1.5 or so. As with the l\ case, the number of
iterations appears to be independent of the problem size.
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Finally we mention briefly the cases when p > 2. These are perhaps of
less interest in practice, and also in theory, since second derivatives always
exist. Newton's method (with line search) is perfectly satisfactory in most
cases. Clearly, for very large p, scaling problems may well be a factor. We
will not dwell on this, but will move on to consider the limiting case, the
Chebyshev approximation problem.

2.4- Chebyshev approximation

For any x G E", and

r = Ax. — b,

let J denote the set of indices

J = {i : \n\ = IHloo},

and let Jc denote its complement. Then, using Theorem 1 and (2.10) we
have the following theorem.

Theorem 5 The vector x is a solution to (2.3) in the Chebyshev case if
and only if there exists A £ M.m with

Xi = 0, ie Jc, and A; > 0, i € J,

such that

ATDgX = 0, (2.42)

where

Dg = diag {gi,.. -,5m},

with gi = sign(rj), i = 1 , . . . , m, as before.

A solution x is unique if A satisfies the Haar condition, that is, if every
nxn submatrix is nonsingular. This condition is sufficient only if m = n +1
(see, for example, Watson 1980). The function ||r||oo is piecewise linear, and
the most popular methods have been based on the simplex method of linear
programming or variants: see, for example, Barrodale and Phillips (1975),
Bartels, Conn and Li (1989). These are finite, moving through sets of points
with J containing n + 1 indices until optimality is achieved: the fact that
there is always a solution at a point with n + 1 indices in J if A has rank n
is just a restatement of the fact that the solution to a linear programming
problem occurs at a basic feasible solution.

Recently, as in the l\ case, there has been interest in the possibility of
smoothing the problem. We describe here an approach that is the analogue
of the methods previously described, due to Coleman and Li (19926). Recall
that their l\ approach was able to cross lines of non-differentiability, avoided
derivative discontinuities except in the limit, and combined descent steps
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based on derivatives with Newton steps in an automatic way. In the current
problem, HrH^ is difFerentiable provided that the norm is attained at just
one component of r. Let this be the jth component. The region of non-
differentiability is therefore defined by the hyperplanes

Because j will change from iteration to iteration, it is not obvious how the Zi
method extends to this case; in particular, there is no global transformation
that will result in new variables corresponding to the distances to these
hyperplanes.

The approach used in Coleman and Li (19926) is to define local trans-
formations. At each step a transformation is defined which transforms r to
a new variable s whose components measure the distance to the hyperplanes
of non-differentiability. At the current point x, with r defined as usual, let
J be a singleton with

Then we require s £ Rm to be defined by

Si =

Alternatively, defining T G R m x m by

then

and

it

in

is easily

addition

seen

T =

that

r - i

= (g-

= 9j 1 (^ —1— (^ ' I f * •

r = Ts.

-Dg,

- D 9 ,

Of course, T depends on r, and so the transformation is a local one.
Let Z be defined as before so that ATZ = 0. Then the Chebyshev problem

can be expressed in the form

minimize seRm ||Ts||oo

subject to ZT(Ts + b) = 0. (2.43)

Let r be such that ||r||oo is differentiate, with J = {j}. Then the gradient
vector is given by Dgej. A descent direction ds for the current s, analogous
to that defined for the l\ case, can be obtained by solving the following
subproblem:

minimize deRn ej

subject to ZTTd = 0, and H D " 1 ^ < T. (2.44)
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Again, D is a positive definite diagonal scaling matrix, and r is a positive
number that restricts the size of ds. As before, up to a scalar multiple, we
can easily see that

so that the corresponding descent direction for r analogous to (2.20) is

d = -A(ATT-TD-2T-lAY ATDgej. (2.45)

This vector can be obtained via the solution of a least squares problem, and
a line search enables r to be updated. Details of this and a suitable line
search are given in Coleman and Li (19926). This affine scaling algorithm
may be slowly convergent, and we consider next the application of New-
ton's method to the problem. This requires suitable reinterpretation of the
characterization conditions as a nonlinear system, analogous to (2.16) and
(2.17). The following theorem is key to this.

Theorem 6 Necessary and sufficient conditions for r to solve the Cheby-
shev problem are that there exists w € Rm such that

DsT
T(Dgej-Zyff) = 0, (2.46)

Zr + Zb = 0, (2.47)

Xi > 0, i€l-{j},

1 - 5 ^ A, > 0,

where

X i = g i ( Z w ) i , i € l

Proof. Let r solve the Chebyshev problem. Then, obviously,

ZTr + ZTb = 0.

Further, from the characterization result, there exist numbers Aj, i G / ,
w e Rm, such that

^ giXi^i = Zw,
iei

where

Xi > 0, i e J,
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It follows that

J2 i*iTTei = TTZw,
iei

and so

TTDgej = Y^ Xiei + TTZw. (2.48)
iei-{j}

Thus

DsT
T(Dgej - Zw) = 0,

and necessity is established.
Now let the stated conditions be satisfied. Clearly this implies that (2.48)

is satisfied in the zth component, for i € Jc U {j} . For i £ J\{j},

and so, by the definition of Aj, (2.48) also holds in these components. Thus
(2.48) is satisfied, and reversing the argument of the proof of necessity leads
to the required result. •

Consider now the application of Newton's method to the nonlinear system
consisting of (2.46) and (2.46). Define Dp as before, where

Then the Newton step in r and w is given by the system of equations

DpT-1 -DST
TZ 1 T 6v 1 I" -DsT

T(Dgej - Zw)
ZT 0 6w 0

It follows from this system that

6r = -A(ATT~TDj1DpT~1A) ArDgej. (2.50)

Coleman and Li (19926) show that in a neighbourhood of a solution to (2.3),
where HrH^ is differentiable, the matrix being inverted on the right-hand
side of (2.50) is positive definite, so that the Newton direction becomes a
descent direction.

Note that (2.45) and (2.50) have the same general form, and suitable
definition of D enables a smooth transition to be made between the steps
(2.45) and (2.50). Let D be chosen by

D = D\l\

Further, define
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where D\p\ denotes the diagonal matrix whose diagonal elements are the
modulus of those of Dp. Define the search direction as

d = -A(ATT-TWeT-lA\~lATDgej. (2.51)

Then, when 6 = 1, (2.51) just gives (2.45), and when (9 = 0, (2.51) gives
(2.50), provided that Dp is positive definite: it is shown by Coleman and
Li (19926) that this holds in a neighbourhood of the solution excluding non-
differentiable points.

Details of the way in which the parameter 6 can be chosen, as well as
other computational issues, are given by Coleman and Li (19926). It is
also shown that, under nondegeneracy conditions analogous to those for
the l\ problem, global convergence to a solution at a quadratic rate may
be established. Numerical results show that the number of iterations is
relatively insensitive to problem size.

The application of interior point methods for linear programming prob-
lems to h and l^ problems has been considered by several other authors,
for example Meketon (1987), Ruzinsky and Olsen (1989), Zhang (1993) and
Duarte and Vanderbei (1994). An approach based on row (column) relax-
ation or proximal point methods has been used by Dax (1989, 1993), Dax
and Berkowitz (1990): this may have potential for large sparse problems. It
is interesting that all these smoothing methods have as a subproblem the
solution of a weighted least squares problem.

The extent to which these new methods for both the l\ and Zoo problems
will usurp methods of simplex type remains to be seen. The main methods
of the latter type for which there is readily available software are not the
most up to date, and in particular the issue of the provision of efficient
line searches is a live one. It would seem that such issues are unlikely to
be resolved until efficient codes for all these different types of method have
been produced.

3. Total least norm problems

An assumption made in Section 2 was that errors were only present in b,
so that the model equations (2.2) were appropriate. However, in many
situations, the independent variable values are also in error. The problem of
dealing with errors in all variables is well known in the statistics literature,
and solution methods go back to the end of the last century. The general
situation is complicated by the need to make additional assumptions about
the error structure in order to ensure identifiability (Moran 1959).

One way of taking errors also in the independent variables into account is
to introduce a matrix E of perturbations of A. This leads to the relationship

r = (A + E)x - b. (3.1)
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The analogue of the general problem considered in Section 2 is then the
problem

minimize \\E : r|| subject to (3.1), (3.2)

where the norm is now a norm on m x (n + 1) matrices. This problem, in
which the norm is the Probenius norm, was first analysed by Golub and Van
Loan (1980), who referred to it as the total least squares problem. Since that
time, problems of this kind have generated enormous interest, and there have
been extensions in various directions, for example to structured problems.
There are many applications, to systems identification, frequency estima-
tion, superresolution, control theory, etc. In keeping with the underlying
theme of this article, we will consider (3.2) for a general class of norms.
This is not merely of theoretical interest, because (as in the previous sec-
tion) norms other than the least squares norm are relevant in practice, and
there has been algorithmic development.

It is not possible to deal with this problem in complete generality (as is
the case when E is zero). There are some fundamental differences. As we
show below, existence of solutions is not even guaranteed. It is not a convex
problem, and general characterization results are not available. However, we
can make progress in an analysis of the problem if we confine attention to
a wide range of matrix norms known as separable matrix norms, a concept
introduced in Osborne and Watson (1985). Before introducing these, we
need the concept of the dual matrix norm: this is defined (analogous to
(2.4)) by

||M||* = max trace(JVTM). (3.3)

Definition 2 A matrix norm o n m x ( n l l ) matrices is said to be separable
if, given vectors u G Mm and v G Rn + 1 , there are vector norms || • \\A on M.m

and || • || B on M.n+1 such that

iiuvrn = iiuimiv|£, iiuvi* = NIAIIVHB.

A useful property of separable norms is the following. Let Z G Km x(n + 1) ,
| |VIIB < 1- Then, for separable norms,

IIZVIU = max uTZv
IMIA<1

< max uTZv

uT

r

< max trace(vuTZ)
l|uvT||*<l

< max trace(GrZ)
||G||-<1
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so that

\\Z\\ > max ||Zv|U. (3.4)
I | | | < I

Examples of separable matrix norms are as follows.

Example 1 Operator norms defined by

||M|| = max ||Mx||c,
IIIU<1

are separable with || • \\A = \\ • ||c, and || • \\B — \\ • \\d'-, in other words, equality
holds in (3.4).

Example 2 The norms denned by

, l < P < o o ,

are separable with || • \\A = || • \\p, and || • ||B = || • ||g, where 1/p + l/q = 1.

Example 3 Orthogonally invariant norms such that

\\M\\ = \\UMV\\,

where U and V are orthogonal, are separable. Both norms are (unweighted)
I2 norms provided that ||eie^|| = 1. This follows because if &\ is the largest
singular value of M, then for any vectors u and v we will have

||uvT|| = llaieiefll = cri,

by assumption, where <TI is the largest singular value of u v r . But

and the result is established. For example, a class of such orthogonally
invariant norms is the class of Schatten p norms, defined by

( n \ VP

J>f] , l<P<oc,

where <7i,..., an are the singular values of M.

To solve the total least norm problem it is necessary to minimize \\E : r||
subject to (3.1). This is greatly facilitated by replacing the problem by an
equivalent but generally much more tractable problem:

minimize ||Zv||^ subject to ||V||B = 1, (3.5)

where Z = [A: - b ] .
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Theorem 7 Let v solve (3.5) with vn+i ^ 0. Then (3.2) is solved by

[E : - r ] = -Zvw T ,

where w € <9||V||B, and x is such that

vT = a(xT, l ) , a eM. (3.6)

Proof. For E, r and x as defined,

Now let E, r, x be any feasible set for (3.1), with v denned by (3.6). Then

< \\[E:-r]\\,

using (3.4). The result follows. •

Notice that the matrix [E : —r] which gives a solution is a rank 1 matrix.
However, if there is no v solving (3.5) with last component nonzero, then
there is no solution to the total least norm problem.

Example 4 Let

A =
" 1 0 "

0 1
1 1

, b =
1
1
1

Clearly v = (1, l ,0)T (suitably normalized) gives a zero value for the min-
imum in (3.5). Further, for any norm, \\E : r|| can be made arbitrarily small;
however, it can never be zero because b is not in the range of A.

Consider the case when the matrix norm is the Frobenius norm. Then
both vector norms occurring in the separable norm definition are least
squares norms and the problem (3.5) becomes that of determining the smal-
lest singular value of the matrix Z. The total least squares problem was
first analysed by Golub and Van Loan (1980). It may happen that certain
columns of A are known to be exact, so that the corresponding columns
of E should be zero. This is easily dealt with by fixing the corresponding
components of v in (3.5) to be zero: see Watson (1983), Osborne and Wat-
son (1985). The solution of (3.5) for other norms is less straightforward, not
least because the problem is not a convex one, and so local solutions are
possible.

Necessary conditions for a solution of (3.5) can be given in the following
form. (In the case when || • \\B is polyhedral, then these conditions are also
sufficient for a local solution; see Watson 1983.)
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Theorem 8 Let v solve (3.5). Then, for every w £ <9||v||#, there exists
g G <9||Zv||,4 such that

ZTg = \\Zv\\Aw.

An algorithm for the minimization of the norm defined by

the total l\ problem (|| • ||,4 is the l\ norm, and || • \\B is the l^ norm), is
given by Osborne and Watson (1985). Variants of these problems, such as
the total lp problem and the orthogonal l\ problem, have also been con-
sidered in Watson (1984), Spath and Watson (1987). The idea of introdu-
cing structure into the matrix E has also been investigated. The case of
zero columns has already been mentioned, but there are important applic-
ations when perturbations of A should preserve other sparsity patterns, or
Toeplitz, Vandermonde or Hankel forms. While (3.5) is useful for certain
types of structure (see, for example, Watson 1988, 1991), for others it seems
necessary to work with the original problem (3.2).

For example, Rosen, Park and Glick (1996, 1997) develop a method con-
cerned with retaining given structure, and permitting the use of general
norms. We will illustrate this in the important special case when A has
Toeplitz structure that must be preserved, as occurs in system identifica-
tion. Then

Aij = an+i-j, i = 1, . . . , m, j = 1, . . . , n,

so that we can define A entirely by its first row

and its first column

Xn-l,- • • , O t l ] ,

= [an,an+i,..., an+m-i}

Thus, in (3.1) we can define E to have the same form, with unique unknown
elements, say /%, i = 1,... ,n + m — 1. Assume that the matrix norm is an
lp norm defined for any matrix M by

Then

\\E : r|| = r(/3,x)
W0

where the vector norm is the lp norm, where

r(/3, x) = (A + E)x - b,
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and where W is an (m + n — 1) x (m + n — 1) diagonal weighting matrix
which accounts for repetitions of elements in E. The problem of minimizing
(3.7) is of course nonlinear in /3 and x, and methods for the l\, I2 and l^
norms based on linearization are given in Rosen et al. (1996). Extensions
to problems where A depends nonlinearly on parameters which have to be
estimated are given in Rosen et al. (1997). The techniques required are those
for nonlinear problems, so we will not deal with this further but proceed to
a more general study of this class.

4. Approximation to data by nonlinear models

When the model contains free parameters which occur nonlinearly, and it is
assumed that errors are only present in the dependent variable, we obtain a
problem which can be posed in the form

minimizexeRn ||f(x)||, (4.1)

where f : Rn —> Rm, m > n, the dependence of f on x is nonlinear, and
the norm is a norm on Rm. Provided that f is differentiate, we can write
A(x) for the m x n matrix of partial derivatives of f with respect to the
components of x. Allowing an arbitrary norm, we have the following result.

Theorem 9 Let x solve (4.1), with f such that

f (z) = f (x) + A(x)(z - x) + o(||z - x||p)

for all z in a neighbourhood of x, where || • ||p is a norm on W1. Then there
exists v G <9||f(x)|| such that

A{x)Tv = 0.

This result may be established along the lines of the proof of necessity in
Theorem 1; the condition is not sufficient except in the special case when
the norm is a convex function of x. See Watson (1980), for example, for the
details.

A general class of methods can be given for finding a point satisfying the
conditions of this theorem (a stationary point). The basis is the solution of
a sequence of linearized subproblems defined at the current approximation
x to a stationary point, which enables an improved approximation to be
obtained. A typical subproblem has the form

subject to ||d||/i < r,

where r is a suitably chosen positive scalar, and || • \\A is a suitably chosen
norm. An analysis of the use of this subproblem is quite straightforward.
Because d = 0 is a candidate for a solution, we must have
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But, for 7 such that 0 < 7 < 1,

f(x + 7 d ) = f (x) + 7,4(x)d + 0(7)

and so

||f(x + 7 d ) | | < 7 | |f(x) + A(

= ||f(x)|| + 7 ( | | f ( x ) + A(x)d|| - ||f(x)||) +0(7) .

Thus d is a descent direction for ||f || at x unless

Thus d = 0 is a solution to the subproblem. Hence, using the characteriza-
tion result given in Theorem 1 (noting that the bound constraint is inactive)
and applying Theorem 9 shows that x is a stationary point.

In practice, a line search can be avoided: either x is replaced by x + d
to give a better approximation, or the subproblem can be re-solved with a
reduced value of r. If care is taken with the rules for choosing r, this process
can give convergence to a stationary point.

For the important cases of the I2, h and l^ norms, methods of this type
are well known. A second-order rate of convergence is possible for poly-
hedral norm problems (which includes l\ and 1^). For example, consider
the IQC norm, and suppose that x* is a stationary point, with the current
approximation x in a neighbourhood of x*. Suppose also that ||f(x*)|| is
attained at exactly n + 1 components of f(x*), say ji, • • • ,jn+i- Then, if
the bound constraints on the solution of the linearized subproblems stay
inactive, solutions can be interpreted as steps of Newton's method applied
to the solution of

fji(x)-<rih = Q, i = l,...,n + l, (4.2)

where CT, = ± 1 . A similar analogy is possible with the l\ norm, with the
corresponding requirement being that, at a stationary point x*, there are
exactly n zeros of f (x*). In general, however, such conditions do not hold:
there are too few nonlinear equations like (4.2) to determine the unknowns,
and convergence can be slow. This has led to the incorporation of second
derivative information into the subproblems. This can be done in differ-
ent ways, for example by adding ^dTHd to the objective function of the
linearized subproblem, where H is the Hessian matrix (or some symmetric
approximation to the Hessian) of the Lagrangian function at the current
point for the problem posed as an optimization problem. The subproblems
can usually be solved as quadratic programming problems. Good methods
for the l\ and l^, problems have been available for some time, and some
references can be found in the review paper by Watson (1987).
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Such methods are good for small problems. They are quite sophisticated,
and relatively heavy computationally. In addition, sparsity in A, say, cannot
easily be exploited. For the l\ and l^ norms, with a suitable choice of
|| • IU, the linearized subproblems can usually be posed as linear programming
problems, and efficient techniques are available for large sparse problems.
Indeed, for very large problems, there may be little choice but to use the
linearized subproblem as the basis for an algorithm, with, if possible, simple
modifications introduced to help speed up convergence. Such ideas for l^
problems are proposed by Jonasson (1993), Jonasson and Madsen (1994).
It remains to be seen how effective such methods will become, but, in any
event, the basic subproblem will remain a very important and robust tool.

As already indicated, the problem (4.1) most often arises from the data-
fitting problem analogous to (2.3) in the linear case, where we can write the
ith component of f as

and where F depends nonlinearly on the parameters forming the vector x.
Here the data consists of sets of points (£i,bi), i = l , . . . , m , with only
b containing errors. There is of course also the possibility of errors in the
values of the variables £j, and in this case the model equations can be written

fi(x) = F(x,£i + 6i)-bi, i = l,...,m. (4.3)

Then it is appropriate to minimize some norm of the vector v in R2m whose
components are /,, i = 1 , . . . , m, Si, i — 1 , . . . , m, where we assume for
simplicity that £j (and hence Si) are in R (although these can in practice
have many components). In this form, the problem is referred to as an
errors-in-variables problem. For example, we could minimize the (square of
the) I2 norm of all the errors,

f + ^2), (4.4)

subject to (4.3). This problem is referred to as orthogonal distance regres-
sion, the reason for this name being that we are minimizing the sum of
squares of the distances from the data points (&, bi) to the model curve. An
efficient method for minimizing (4.4) is given by Boggs, Byrd and Schnabel
(1987), with software available in Boggs, Byrd, Donaldson and Schnabel
(1989). The point here is that there is considerable structure which can be
exploited.

The minimization of the l\ norm of v has also been considered, again
exploiting the structure; see, for example, Watson and Yiu (1991), Wat-
son (1997).
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5. Chebyshev approximation of functions

Let f(x), fa(x), i = 1,. . . , n, be continuous functions denned on a compact
set X. Then the problem of approximating / in the Chebyshev sense by
a linear combination of the functions fa can be stated as: find coefficients
Cj, i = 1,. . . , n, to minimize

max f(x) -

The analogue of (2.42) is that there exist points Xj, j = 1, . . . , t in X where
the norm is attained with sign gi, i — 1, . . . , t, and corresponding numbers
Hi, i = 1,. . . , t such that Hi9i > 0, i = 1, . . . , t and

ATfi = 0, (5.1)

where A is the t x n matrix with (i,j) element (j)j(xi). Suppose that
X = [a,b] C R. Then, if the system of functions fa, i = l , . . . , n forms
a Chebyshev set on [a,b], so that no nontrivial linear combination of the
functions has more than (n — 1) zeros in [a, b], then it is readily shown from
(5.1) that t > n + 1, and the values of Hi alternate in sign. This gives us the
well-known classical alternation characterization property: there are n + 1
points in [a, b] where the norm is attained with the error alternating in sign
as we go from left to right, or briefly

A{f-4>)[aM>n + l, (5.2)

where </> denotes the approximation. The exchange algorithms of Remes
(both single-point exchange and multi-point exchange) are effective ways of
computing the (unique) best approximation.

Some general alternation theorems are also available for problems with
constraints. For example, Brosowski and da Silva (1992) consider the prob-
lem of approximation on [a, b] by a linear combination of functions forming
a Chebyshev set on [a, b], subject to certain side-conditions. Their results
contain as a special case the classical theorem, and other known results for
one-sided and restricted range approximation.

Once the Chebyshev set condition is dropped, then life becomes much
more complicated. There may be nonuniqueness of solutions, but a more
serious problem in practice is that, at a solution, there may be fewer than
n + 1 points where the norm is attained. If this possibility is ignored, then
exchange methods can be applied, although convergence can be slow and
ill-conditioning can occur (because of coalescing points in the set where
the norm is attained). Multivariate problems are particularly susceptible
to this difficulty. Methods of Newton type are available, with the Newton
method used as a local method when information about the number of points
where the norm is attained at a solution is known, along with associated
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information. Methods of this type also apply to nonlinear problems (for
example, Watson 1976).

A method for solving a wide class of continuous Chebyshev approxima-
tion problems, linear as well as nonlinear, is given by Jing and Fam (1987).
The algorithm is shown to be convergent (possibly to a local minimum), and
convergence is quadratic in nondegenerate cases. The method has some sim-
ilarities to a method due to Jonasson and Watson (1982). Both approaches
solve a sequence of linearized subproblems on the current set of points where
the error function attains its local maxima, followed by a line search to obtain
an improved approximation. Under appropriate conditions, both methods
are equivalent locally to the Remes (multi-point) exchange method.

Most emphasis, however, has been on the use of particular approximating
functions whose special properties can be exploited, and we consider some
examples of these.

5.1. Chebyshev approximation by spline functions

Aside from interpolation, the use of spline functions for approximation has
mainly been concerned with the use of the Chebyshev norm. Consider now
the problem of approximating from the space of spline functions defined as
follows.

Definition 3 Let integers m and k be given, and let a = XQ < x\ < • • • <
Xk+\ = b. Then

Sm = {se Cm~l[a,b] : s(x) ellm on [xi,xi+i], z = 0 , . . . , f c} ,

is the space of polynomial splines of degree m with k fixed knots, where ITm

denotes the space of polynomials of degree m. Sm is a linear space with
dimension m + k + 1.

The theory of approximation by Chebyshev sets does not apply to ap-
proximation from Sm. However, Sm is an example of a weak Chebyshev
space: there exists at least one best approximation from Sm to any continu-
ous function that has the classical alternation property (although there may
be others that do not). The theory of Chebyshev approximation by splines
with fixed knots is fully developed, and a characterization of best approx-
imation goes back to Rice (1967) and Schumaker (1968). What is required
is the existence of an interval [xp,xp+q] c [a,b], with q > 1 such that there
are at least q + m + 1 alternating extrema on [xp, Xp+g] or, in the notation
introduced in (5.2),

Af ~ s)[xp,xp+q] >q + m+l,

where s £ Sm.
In addition to characterization of solutions, there has been interest in

conditions for uniqueness and strong uniqueness of best approximations.
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Definition 4 A function Sf € Sm is called a strongly unique best ap-
proximation to / € C[a,b] if there is a constant Kf > 0 such that, for all

\\f-s\\>\\f-sf\\ + Kf\\s-sf\\.

In general, best approximations are not unique. However, the uniqueness
(and strong uniqueness) of best spline approximations is characterized by
the fact that all knot intervals contain sufficiently many alternating extrema
(see Niirnberger 1989).

An iterative algorithm for computing best Chebyshev approximations
from spline spaces is due to Niirnberger and Sommer (1983). As in the
classical Remes method, a substep at each iteration is the computation of a
spline s € Sm such that

) =h, i = l,...,m + k + 2,

for some some real number h, and given points £ i , . . . , £,m+k+2 m [a> b\. The
number of equations reflects the fact that Sm has dimension m + k + l. Then
one of the points £j is replaced by a point where ||/ — s|| is attained in [a, b] to
get a new set of points {£i}. The usual Remes exchange rule can result in a
singular system of equations, so a modified exchange rule is needed. Such a
rule is given by Niirnberger and Sommer (1983), which ensures that the new
system has a unique solution. Because of possible nonuniqueness of best
approximations, the proof of convergence is fairly complicated. However,
a convergence result can be established. A multiple exchange procedure
can also be implemented, and quadratic convergence is possible. The above
results can be extended to more general spline spaces, where the polynomials
are replaced by linear combinations of functions forming Chebyshev sets:
see, for example, Niirnberger, Schumaker, Sommer and Strauss (1985).

To permit the full power of splines, one should allow the knots to vary,
rather than be fixed in advance. The corresponding approximation problem
is then a difficult nonlinear problem. To guarantee existence of best approx-
imations, multiple knots have to be allowed. There may be local solutions; a
characterization of best approximations is not known. For the case of k free
knots, necessary and (different) sufficient conditions of the alternation kind
given above may be proved. Let q' denote the sum of the knot multiplicities
at the points xp+\,..., xp+q-\. Then it is necessary for s € Sm to be a best
Chebyshev approximation with k free knots to / in [a, b] that there exists
an interval [xp, xp+q] C [a, b] with q > 1 such that

Af ~ s)[xP,xp+q] >m + q + q' + l

(Niirnberger, Schumaker, Sommer and Strauss 1989); it is sufficient for
s £ Sm to be a best Chebyshev approximation with k free knots to / in
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[a, 6] that there exists an interval [xp,xp+9] C [a, b] with q > 1 such that

A(f-s)[XpiXp+q]>m + k + q' + 2

(Braess 1971). The necessary condition is strengthened to a possibly longer
alternant by Mulansky (1992). Other results on this topic are given by
Kawasaki (1994), Niirnberger (1994a).

Although a characterization of best spline approximations with free knots
is not known, a characterization of strongly unique best spline approxima-
tions with free simple knots is available: what is required is that all knot
intervals contain sufficiently many alternating extrema (Niirnberger 1987;
see also Niirnberger 19946).

Some algorithms for computing best Chebyshev approximations by free
knot splines are available. For example, Niirnberger, Sommer and Strauss
(1986) (see also Meinardus, Niirnberger, Sommer and Strauss 1989) give an
algorithm that converges through sequences of knot sets from an arbitrary
set of knots. For each set of k knots, best Chebyshev degree m polynomial
approximations to / are obtained on each subinterval using the classical
Remes algorithm. The knots are then adjusted by a 'levelling' process, so
that the maximum errors of the polynomial best approximations are equal-
ized. Finally, the algorithm for fixed knots described above is applied on
the levelled knot set.

Generalizations to multivariate splines have mainly been concerned with
interpolation problems. But consider bivariate splines on [ai,6i] x [02,62]-
This region can be divided into rectangles by knot lines x = £j, y = yi, i =
1 , . . . , s, and a tensor product spline space can be defined. As in the uni-
variate problem, partitions can be defined and improved systematically in
such a way that best Chebyshev approximations are obtained in the limit.
Some recent work on this problem is given by Meinardus, Niirnberger and
Walz (1996), Niirnberger (1997). However, there are many unsolved prob-
lems: see Niirnberger (1996).

5.2. Chebyshev approximation by rational functions

Another important class of approximation problems is the best Chebyshev
approximation of continuous functions by rational functions. The basic
problem is as follows: define Rum by

{
-f{ : P(x) =
^ X } j=0 k=0

Q(x) > 0 on [0,6] I.

Then, given fix) G C[a, b], we need to determine R G Rnm to minimize
| | / — R\\, using the Chebyshev norm on C[a, b}. For the special case when
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P{x) and Q(x) are polynomials of degree n and ra, respectively, existence of
a best approximation is guaranteed, is unique (up to a normalization), and
is characterized by an alternating set of n + m + 2 — d points,

A(f - R)[atb] >n + m + 2-d,

where d is the defect of the approximation, that is, the minimum difference
between the actual degree of P(x) and Q(x) and n and m, respectively.
If d > 0, the best approximation is said to be degenerate. For more gen-
eral quotients, existence is no longer guaranteed, although characterization
results are available (though not necessarily of alternation type), and unique-
ness results may be extended.

For rational approximation by quotients of polynomials on an interval,
the analogue of the Remes exchange method may be applied. It assumes
nondegeneracy of the best approximation, and second-order convergence can
be obtained. The system of linear equations that needs to be solved in the
linear problem is replaced by a nonlinear system in the rational problem,
equivalent to an eigenvalue problem, and various methods were proposed for
this in the 1960s. Breuer (1987) has suggested a different direct approach to
this subproblem, which uses continued fraction interpolation, and which, it
is claimed, can lead to a considerable increase in efficiency, and also accuracy
and robustness.

If attention is restricted to a discrete subset of [a, b], with positivity of Q(x)
only required on the discrete set, then existence of best approximations is
no longer guaranteed, even in the polynomial case, and characterization and
uniqueness results are no longer valid. The Remes algorithm nevertheless
may be applied, although a serious competitor is the differential correction
algorithm, first proposed by Cheney and Loeb (1961), and further analysed
by Barrodale, Powell and Roberts (1972), Cheney and Powell (1987). The
method, which consists of a sequence of linear programming problems, has
guaranteed convergence from any starting point, with quadratic convergence
in the absence of degeneracy. It may in theory be applied to problems on
intervals (Dua and Loeb 1973), but the solution of the subproblems is not
straightforward.

Let the discrete subset on which a solution is required be Xi, i = 1 , . . . , t,
and let R%m be the set

{ Pi \

WX) j=Q fc=0
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Let P/Q £ R%m, and let A satisfy

1/ (2 :0-P(x i ) /Q(xi ) |< A, i = 1 *•

Then
mxJQixJ-PixJl^AQixi), i = l,...,t. (5.3)

Expanding the right-hand side, regarded as the function g(A,Q(xi)) =
) , in a Taylor series about (Ak, Qk(x{)) gives for each i

= AkQk(Xi) + (A - Afc)Qfc(si) + (Q(xO - Qfc(x0)Afc + . . . ,

so to first-order terms the ith term of (5.3) can be written

\f(xi)Q(xi) - P(Xi)\
< AkQk(Xi) + (A - Afc)Qfc(xi) + (Q(^) - Qk(xi))Ak

= (A - Ak)Qk{xi) + Q(xi)Ak.

Thus, to first-order terms,

\f(xi)Q(xi) - P(Xi)\ - AfcQ(xi) < (A - A*)Q*(zO> i = 1 , . . . , t,

The differential correction algorithm is as follows.

(1) Choose an initial approximation Ri = P\/Q\ € -R^m; set fc = 1.
(2) Determine P(x) and Q(x) to minimize the left-hand side of (5.4), where

Afc = max \f(xi) -
l<i<t

and Qk is not identically zero.
(3) Set Pk+\ = P, Qk+i = Q, k = k + 1 and continue unless there is

convergence.

This algorithm generates a monotonic sequence of numbers that decrease
to the minimum error. Starting with Qi(x{) > 0, i = 1,... ,t, subsequent
denominators retain this property. When the solution is unique, Cheney
and Powell (1987) show that convergence is at least superlinear. Barrodale
et al. (1972) show that quadratic convergence is obtained in the polynomial
case in the absence of degeneracy.

A potentially unsatisfactory feature of approximation from Rnm (or R%m)
is that the denominator, although positive, can become arbitrarily close to
zero at certain points. It is not sufficient simply to impose a lower bound on
Q, because of the possibility of multiplying both numerator and denomin-
ator by an arbitrary constant. A modification of the differential correction
algorithm that applies to problems with a lower bound on the denominator
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and upper bounds on the absolute values of the coefficients bi is given by
Kaufman and Taylor (1981). It is more natural, however, to impose upper
and lower bounds on the denominators themselves ('constrained denominat-
ors'). Some aspects of uniqueness are considered by Li and Watson (1997).
A modified differential correction algorithm for this problem has been given
by Gugat (1996a). This involves a constraint of the form

l*{x) < Q(x) < u{x), (5.5)

over the appropriate set, where fi and u are continuous functions. (In fact the
algorithm applies to much more general problems than the one considered
here, possibly defined on intervals, even having nonlinear expressions P
and Q.) The subproblem corresponding to (5.5) above differs in that the
additional conditions

li{xi)<Q{xi)<v[xi), i = l,...,t (5.6)

are imposed. However, it differs also in that, whereas the original method
starts with an arbitrary approximation, with denominator Q\ positive on
xt,i = 1,.. . ,t, and with error Ai, the method of Gugat (1996a) can start
with an arbitrary number Ai that is allowed to be smaller than the current
error, and an arbitrary (feasible) denominator Q\. This flexibility turns out
to be an important advantage: for example, numerical results show that
the choice Ai = 0 is a good one. Subsequent A& are defined as in the
original algorithm, but with the constraints (5.6) included in step (2). It
is shown by Gugat (1996 a) that convergence results for the original version
carry over. The development outlined above shows that the differential
correction algorithms have links with Newton's method. Other methods
using variants of Newton's method are those of Hettich and Zenke (1990)
and Gugat (19966). However, in contrast to the methods considered here,
these do not generate a monotonic sequence.

6. L\ approximation of functions

While the theory of best Chebyshev approximation to functions has (perhaps
quite naturally) received considerable attention, the same cannot be said for
best L\ approximation. Given the same setting as at the start of Section 5,
the problem is

' I \f(x)-y/cicf>i(x)\dx. (6.1)
n

. . . / I „ / X

minimize

For given c, let Z(c) denote the zeros of f(x) — Y17=i ^^((x) m -X\ a n d for
points where this is nonzero, let g(x, c) denote the sign. (We may define g
to be zero at other points.) Define

V(c) = {v(x) : |H|oo < 1, v(x) = g(x, c),x <£ Z}.
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Then it may be shown (for example, Watson 1980) that c is a solution to
(6.1) if and only if there exists v € V(c) such that

f v(x)4)j{x)dx = 0, j = 1,... ,n. (6.2)
Jx

Further, if the system of functions {(f)i(x),..., (f>n(x)} forms a Chebyshev set
on [a,b], the best approximation is unique.

If the measure of the set Z is zero (for example if Z just consists of a
finite set of points) then clearly (6.2) can be written as

g(x,c)(f)j(x) = 0, j = l,...,n.
Jx

This corresponds to the case when the norm is differentiable, and the above
equations are just zero-derivative conditions with respect to the components
of c. The likelihood of these being appropriate in practice means that usu-
ally the problem is a smooth one. It also means that great store is placed
on the points where there are sign changes, or equivalently where the ap-
proximation interpolates / . If these points were known, and were exactly n
in number, then we could compute the best approximation by interpolation,
provided that there were no other changes of sign in the error of the resulting
approximation.

Definition 5 The points x\ < • • • < xt € (a, b) = (xo,Xt+i), where 1 <
t < n, are called canonical points if

i=o ^Xi

In the Chebyshev set case, existence and uniqueness of such a set of points
were established by Micchelli (1977). For approximation by polynomials of
degree n — 1 in [a, b], t = n and the location of those canonical points is
known - they lie at the zeros of the Chebyshev polynomial of the second
kind of degree n (shifted if necessary). Thus their location is independent
of / . Interpolation at these points can quite frequently result in the best
polynomial approximation. (For further analysis of the L\ problem, see
Pinkus 1989.)

Example 5 Consider the approximation of f{x) = 5 + 6e2x + 2sin(4x)
by polynomials of degree n — 1 on [—1, 1]. Table 1 gives the outcome of
determining a polynomial by interpolation at the zeros of the second kind
Chebyshev polynomial Un(x). Shown are the number of zeros of the error
in [—1, 1], the value of the l\ norm for the approximation given by the
interpolant, and the minimum value of the norm. Clearly, when the number
of zeros equals n, the best l\ approximation is obtained and the norm is the
minimum norm, otherwise it is not.
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Table 1. Interpolating polynomials

n

2
3
4
5
6
7
8
9
10
11

no of zeros

2
5
5
5
7
7
9
9
11
11

norm

7.658748
1.022593
0.986141
0.704263
0.081135
0.061799
0.005072
0.003937
0.000192
0.000150

minimum norm

7.658748
0.816405
0.812920
0.704263
0.063107
0.061799
0.003947
0.003937
0.000150
0.000150

An algorithm for computing best L\ approximations from general linear
subspaces is given by Watson (1981). It is essentially of exchange type,
based on the calculation of the zeros of the error at each iteration, and
the construction of descent directions. It is also of Newton type, since it
constructs the Hessian matrix of the error when it exists, and can have a
second-order convergence rate. In a sense, it can be thought of as analogous
to the second algorithm of Remes for Chebyshev problems, where a sequence
of sets of zeros plays the role of a sequence of sets of extreme points; the
connection with Newton's method under appropriate circumstances is also
something the methods have in common. An algorithm for nonlinear prob-
lems is given by Watson (1982).

For best L\ approximation by splines with fixed knots, it is known that
every continuous function has a unique best approximation. Further, under
certain assumptions, the best approximation can be determined by interpol-
ation at canonical points. These results go back to Micchelli (1977). Little,
if any, practical work has been done on this or more general problems.
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